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Abstract

The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component
experimentof the NASA Orbital ExperimentsProgram(OEX), wasflown aboardthe shuttle
Columbia (OV102) mounted at the forward end of the nose landing gear well with an
atmosphericgasinlet systemfitted to the lower fuselage(chin panel) surface. The SUMS
was designed to provide atmospheric data in flow regimes inaccessibleprior to the
developmentof theSpaceTransportationSystem(STS). The experimentmissionoperation
beganabout onehour prior to shuttlede-orbitentry maneuverandcontinueduntil reaching
1.6torr (about 86 krn altitude).

The SUMS massspectrometerconsistedof the spareunit from the Viking mission
to Mars. BendixAerospaceunder contract to NASA LaRC incorporated the Viking mass
spectrometer, a microprocessorbased logic card, a pressurized instrument case,and a
University of Texas at Dallas provided gas inlet system into a configuration suited to
interfacewith the shuttleColumbia. The SUMSwasbuilt bythe BendixAerospaceDivision.
After completionthe SUMSexperimentsupportingactivitiesweretransferredto UTD under
the direction of NASA LaRC.

The SUMS experimentunderwentstatic and dynamiccalibration aswell asvacuum
maintenancebefore and after STS40 shuttle flight. The SUMS flew a total of 3 times on
the spaceshuttleColumbia. Betweenflights theSUMSwasmaintainedin flight readystatus
at the physicslaboratoryof UTD. The flight data hasbeenanalyzedby the NASA LaRC
AerothermodynamicsBranch. Flight dataspectrumplots and reports are presentedin the
Appendicesto the Final TechnicalReport for NAS1-17399.
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1.0 Introduction

The shuttle Upper-Atmosphere Mass Spectrometer (SUMS) was developed as a part

of the NASA-Orbiter Experiments (OEX) Program. The OEX Program objective was to

provide research quality instrumentation to study shuttle Orbiter performance over the entire

spectrum of atmospheric flight. Flight data from the OEX program experiments are being

used by various NASA groups in support of the development of flight performance

prediction technology for future space transportation systems as well as to provide flight data

in regimes which are difficult to simulate with ground based laboratory facilities. The SUMS

instrument provided measurements of in situ rarefied flow aerodynamics and measurements

of high altitude atmospheric parameters for aerodynamic calculations.

The SUMS instrument was designed around an existing proven airborne mass

spectrometer which was modified to meet the experiment objectives. Two NASA Viking

Program upper aatmosphere mass spectrometer (UAMS) back-up mass spectrometers were

used by Bendix Aerospace under the direction of NASA Langley Research Center (LaRC)

and NASA Johnson Space Center (JSC) to form the core of the NASA OEX SUMS

instrument. The Viking UAMS spare mass spectrometer was packaged along with a Bendix

single board microcomputer and power supplies into a pressurized case suitable for the

shuttle space environment. A gas micro leak inlet system derived from the proven NASA

Pioneer Venus Large Probe Mass Spectrometer (LNMS) was provided by the University of

Texas at Dallas (UTD) to interface between the shuttle entry atmosphere and the UAMS

ion source entrance. The OEX program provided a data handling and command system to

interface the SUMS to the shuttle power command and data recording systems.

The SUMS instrument flew aboard the shuttle Columbia (OV102) three times. The

atmospheric flow regime data was obtained on Flight STS 35. Flight STS 61C failed to

obtain data due to a "sticking" protection valve, Flight STS 40 lost data due to water

accumulated in the entrance tube. No further flights are planned due to the scheduled
refurbishment of the shuttle Columbia vehicle.

2.0 History of the SUMS Instrument

In order to assess the heritage of the SUMS instrument components some history of

the Viking Project Mass Spectrometer is included. Viking Project hardware development

began in 1971 and was completed in 1974. The SUMS Mass Spectrometers (Viking spares)

were built at Bendix-Ann Arbor under the supervision of Dr. A.O.C. Nier of Minnesota, the

Viking Entry Science Principal Investigator. The two spare Viking mass spectrometers (MS)

units along with the appropriate Ground support Equipment (GSE) were made available to

the OEX Project for use in the SUMS instrument program in 1979.

The Bendix Aerospace Operation of Ann Arbor was selected to fabricate the SUMS

instrument under contract NAS1-16073. The NASA Johnson Space Center, Orbiter

Experiments Office provided support in interfacing the SUMS to the shuttle vehicle and

general support throughout the experiment development by a contract with Lockheed

(Contract No. NAS9-15588).



While the SUMS was at Bendix Aerospace the instrument went through initial
calibration, performancetesting,and an environmentalqualification test program. At the
sametime the required shuttleProgram Safetyand Interface Reviewswere accomplished.

After completion of the effort at Bendix,the SUMS wasmoved to UTD to be kept
flight ready until time to install the instrument aboard the shuttle for a flight opportunity.
The SUMS GSE consistedof a microprocessorcontrolled test set, an HP computer, a
vacuum maintenancestation, and a static gas calibration station. The inlet systemwas
developedby UTD under subcontractto BendixAerospace(SC 1663). Support for SUMS
Flight Readinessand Vacuum MaintenancewascontractNAS1-17399from NASA LaRC
to UTD.

2.1 Major Events in SUMS Activities

SUMS Shipped from Bendix

OEX - Integrated Systems Test
Columbia Fit Check at Palmdale

Microprocessor Failure

Emission Regulator Failure

STS 61C Flight Event

Pre-Ship Functional at UTD

Ship to KSC for Installation

Completion of KSC Testing
Installation

KSC Launch

Flight

Edwards Landing

Protection Value Failure Investigation

STS 35 Flight Event

Shipped to KSC
Moved to OPF

Orbiter Flight (10 days)

Edwards AFB Landing

STS 40 Flight Events

Shipped to KSC

Installed Flight Battery
Functional Test

Launch

3-3-82

1-25 -84

3-27-84

6-13-84

7-26-84

9-4-85

9-6-85

9-18-85

10-1-85

1-12-86

1-12 thru 1-18-86

1-18-86

2-27-86

2-01-90

2-19-90

12-1 thru 12-11-90

12-11-90

12-14-90

1-04-91

2-24-91

6-5-91



Orbiter Flight
SUMS Removal
SUMS Return to UTD
SUMS Evaluation
SUMS Vacuum Maintenance

6-5 thru 6-12-91
6-29-91
7-8-91
7-15-91
7-20-91

3.0 Theory. of Operation of the SUMS Instrument

The initial prototype Viking Upper Atmosphere Mass Spectrometer (UAMS)

instrument was built by A.O. Nier of University of Minnesota for the Martin Marieta Corp.

The flight UAMS instruments were built by the Bendix Corporation Aerospace Operation.

The UAMS had been designed to have its ion source interface at the surface of the

Viking aeroshell as shown by Figure 1. This interface was modified to receive gas by way

of an inline protection valve from a .25 in. diameter stainless steel (ss) tube. Figure 2 is a

block schematic of the SUMS inlet system. The ss tube couples the ion source to the inlet

system which is mounted to within about 4 inches of the entrance tube which samples the

atmosphere in the vicinity of the shuttle orbiter chin panel. Gas flows from the entrance

tube by way of a SEADS port tee connection to the SUMS inlet system. In the inlet system

the gas flows by one path to a Tavis pressure transducer and by a second path to an inlet

valve. Under control of the stored logic program of the SUMS microcomputer the inlet

valve is open to allow gas to flow to the two parallel micro leaks. Gas flowing through the

parallel leaks feed the ion source from on-orbit pressure of about 1 x 10 -6 torr until 5 x 10 .3

torr pressure atmosphere. During this period of time the mass spectrometer gas

measurement data is monitored by the SUMS computer to determine if any 3 consecutive

gas measurements read greater than 1.0 x 10 .9 amperes. As the SUMS computer senses the

1 x 10 .9 ampere threshold it issues a command to operate the range valve. The range valve

closes off the large leak leaving the gas flow through the small leak only to feed gas to the

ion source. The SUMS computer continues to monitor the mass spectrometer until the 1

x 10 .9 ampere threshold is sensed for the second time, the computer then sends a command

to close the inlet valve and the protection valve. The Tavis pressure transducer output

signal and the ion current are monitored by the SUMS computer to prevent SUMS

operation at too high a pressure and provide an overlapping pressure measurement at the

1.0 torr region.

The SUMS experiment is controlled in flight by the shuttle Orbiter General Purpose

Computer (GPC) software after the forward fuselage Load Control Assembly has furnished

the proper SUMS power up commands. SUMS measurements are stored on digital

magnetic tape by the OEX PCM tape recorders. After landing the data tapes are sent to

NASA/JSC. JSC processes the OEX Data to Produce a SUMS Computer Compatable Tape

(CCT). The CCT is sent to LaRC for data processing and analysis by the

Aerothermodynamics Group.
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Figure 1

Schematic diagram of the Viking UAMS mounted on the aeroshell of the Viking lander

spacecraft. The OEX-SUMS instrument utilized a replacement for the cap which interfaced

with the Sums inlet via 1/4 inch diameter stainless steel tubes. The schematic shows the ion

flow for the 2 channel Mattauch-Herzog double focussing mass spectrometer.
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SUMS Instrument Specification

The SUMS instrument may be generally described by the following instrument

specification.

Mass Range:
low channel

high channel

Current Resolution:

Mass Resolution

Scan Rate:

Emission:

Ionization Potential:

Ion Source Sensitivity:

Measurement Range:
Minimum Orifice Pressure

Maximum Orifice Pressure

Large Leak (#1) Range

Small Leak (#2) Range

Weight:

Power:

Commands: a)
b)
c)

1 to 7 amu

7 to 50 amu

3%

1% valley of adj. peaks at M/E 28

5 seconds per scan

100 IsA

75 volts

10-SA/torr

10 -6 torr

1.5 torr

10 + torr to 5 x 10 .3 torr

5 x 10 .3 torr to 1.6 torr

89 lbs

28 Vdc, 2A maximum

SUMS Instrument On/Off

SUMS Ion Pump Power On/Off

SUMS Maintenance Pump Power On/Off

Temperature On-Orbit
Maximum

Minimum

+ 100 ° F

-40 ° F

6



SUMS DATA AND DATA CONTROL

The SUMS spectrometer data is 16 bit parallel digital synchronized by a 64 kHz TrL

clock and a read data strobe. The SUMS housekeeping data is high level analog (0-5 volts).

The read data strobe must have a period somewhere between 5.0 msec. and 11.2 msec. with

7.0 msec. being the preferred period. The duration of the strobe should be 16 periods of

the 64 kHz (250 I_sec.) The logic of the strobe is active low. The SUMS experiment is

allotted a data rate of 1600 bps. The science measurements are output from the UAMS at

800 bps. The mass range is scanned in four scans of interlaced measurements. The SUMS

data is read by the OEX Pulse Code Modulator (PCM data format consists of: (1) A frame

which consists of 0 to 63, 8 bit words and (2) a major frame which consists of 0 to 63 frames.

The time for a major frame is 0.08875 seconds. SUMS science data was allocated word 47

and word 48 of each frame of data. The SUMS 12 housekeeping data words were

interleaved in word 49 and appear once each major frame. Since the PCM over samples

the mass spectrometer data, if a mass spectrometer data word is not available the SUMS

inserts a status word in the data stream. The science data from the mass spectrometer

consists of 12 engineering words, 72 low mass words, and 360 high mass words each scan.

A scan is completed every 5 seconds at a rate of 13.2 millisec per step. The details of the

SUMS data may be found in Appendix A and in Appendix D.

SUMS POWER MODES

Mission phase
Prelaunch

Orbit

Entry

Landing

SUMS Mode POWER

ION PUMP MAINTENANCE 2 WATTS

SUMS ION PUMP (SIP) 30 WATTS
SIP AND INSTRUMENT POWER 45 WATTS

ION PUMP MAINTENANCE 2 WATTS

Flight Power Profile

During a shuttle Orbiter flight the SUMS experiment typical power profile will be as
follows:

Prelaunch - Ion Pump Maintenance Power - 2.0 watts

Orbit Insertion + 1 hour - SUMS Ion Pump On for 3 hours - 30.0 watts

De-orbit Burn - 2 hours - Ion Pump and Instrument On for Entry + 20 min.-45.0
watts

Shuttle landing - Ion Pump Maintenance Power - 2.0 watts



3.1 Magnetic Analyzer

A double focussing mass analyzer containing tandem electric and magnetic field

sectors covers the mass range 1-50 amu. The mass range is divided into two outputs in

parallel. The magnetic sector focusses the two outputs in the ratio 1:7. The ions are

collected on faraday cups placed at the proper radius to receive the ions. In the magnetic

analyzer ion trajectories are determined by the relationship

m/e = kR2B2N

where m/e is the mass to charge ratio of the ion, R is the trajectory radius in cm (2.54 cm

for high mass channel), V is the ion acceleration voltage in volts (177 Vdc for ions of mass

44 amu), k is a constant (4.824 X 10 -5) and B_ is the field strength of the magnet in gauss.

The magnetic analyzer has a field of approximately 5000 gauss. The mass of an ion

entering the high mass collector is given by m/e =7780/V. For the low mass collector the

mass collected is 1/7 that for the high mass collector.

The high mass exit slit has a width of 0.063 cm and the low mass exits slit has a width
of 0.038 cm.

The magnetic analyzer magnet poles cover the collector slits completely rather than

end abruptly at the focal plane. This virtually eliminates the variation in magnetic fields at

the exits. The air gap is 0.42 cm, and the pole faces are 0.09 cm thick. The magnets are

2.54 cm thick Alnico V material. The yoke was 0.5 cm thick soft iron.

A .3 liter/sec sputter ion pump keeps the instrument clean while sealed off. With 100

_A emission current and the 0.3 liter sputter ion pump pumping the analyzer section, the

response of the instrument is nearly linear up to ion source pressures of 3 x 10 -4 torr (to 5

x 10 .5 torr without the sputter ion pump).

Decreasing V in the above equation causes ions of increasing mass to be focussed on

each of the ion collectors forming a series of mass peaks, the amplitudes of which are

proportional to the concentration of each gas species in the ion source. Figure 3 shows a

SUMS high channel mass spectrum. In this instance, mass abundance in ion current is

plotted on a log scale of 4 decades against time, which is equivalent to mass number in amu

and ion acceleration voltage. Major peaks are identified by amu or ion acceleration voltage

steps. The detector is a linear auto-ranging electrometer amplifier. A 4 bit digital word

determines the measurement range and a 5 Bit digital word determines the signal level

within the range.
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3.2

3.3

3.4

Ion Source

The ion source is located in the cavity into which the inlet system passes the

atmospheric gas samples. Gas molecules having entered the ion source cavity are

bombarded by an electron beam as they pass through the beam volume. The ion source

consist of a heated 1 mil diameter tungsten-rhenium (98%W, 3%Re) hairpin-shaped wire

filament. A small magnet of Alnico bars provide 300 gauss of focus to the electron beam.

Emission is regulated by the emission control electronics to 100 I_A. Approximately 90%

of the electron beam is collimated by the magnetic field to enter the trap box opposite the

filament. Some of the redundancy of the Viking instrument was removed to simplify the

SUMS instrument. The ionization potential was set to a single level, (75 volts) and the

filament selection was fixed hard wired to the selected filament. Ions formed by electron

bombardment are drawn out of the source cavity by a large negative accelerating potential

resulting from the ion chamber being at 330 to 1200 Vdc positive and the collimating slits

being at ground potential. The J-plates, alpha and object slits focus the beam toward the

analyzer tube.

Electrostatic Analyzer

Following the ion source the ions are passed through a set of parallel curved plates

whose potential vary proportionately to the ion acceleration voltage. The ion beam that

emerges from the curved plate analyzer section has the same distribution independent of the

mass of the ion. Potentials on the plates are set to track the ion acceleration voltage at a

constant ratio, the outer plate being positive and the inner plate negative. Ions having a

small difference in energy, AE, from the central beam will follow trajectories through the

electric sector having different radii, thereby being focussed in energy.

Gas Inlet System

The major addition to the Viking UAMS for SUMS is the gas inlet system which

effectively creates a "closed-source"mass spectrometer system from the existing "open-source"

system. The inlet system provides three functions; establishing a gas flow path from the

pressure port to the UAMS, protecting the instrument in a high pressure environment, and

expanding the dynamic measurement range. Figure 4 diagrams the relationship of the gas

entrance tube to the Shuttle vehicle. The latter function is accomplished by the use of two

flow restrictors or "leaks" in parallel. Leak #1 has a large conductance and establishes the

system pressure drop at high altitudes. Leak #2 has a very small conductance and allows

the instrument to operate at lower altitudes and higher pressures. A "dynamic range" valve

is inserted in a series with Leak #1 so that closure of this valve forces the gas to flow

through Leak #2. Such a system is required on SUMS because the range of UAMS ion

source pressures for which measurements are valid is 10 .8 to 10 -4 torr, which is inadequate

to span the required surface pressure range at the SUMS gas entrance port of 10 -6 to 1.6

tort with a single leak. This surface pressure range arises from the requirement to cover the

entire transitional flight regime, with substantial coverage of free-molecular flow above

transition and of the hypersonic continuum below transition with overlapping coverage of

10
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the conventional low range pressure transducer. Figure 5 gives a summary of the shuttle

predicted Orbiter altitude profiles for surface pressure.

The basic feature of the inlet system is its simplicity. A pressed tube micro leak with

a very low surface to volume ratio admits gases directly into the ion source without passing

through other leaks or pumping stages. This feature minimizes any reactions the gases may

undergo with the walls of the systems. Other advantages of the micro leak are its extremely

small dead volume, its inertness to reactive gases, and its fine adjustability to any desired

leak rate. The fine leak (leak #2) was formed from 1/8 in OD, .049 in wall thickness

stainless steel tubing. The coarse leak (leak #1) was formed from 1/8 in OD, .020 in wall

thickness stainless steel tubing.

The micro leak is a gas permeation device which can provide controlled gas flows of

extremely small magnitudes with good accuracy, stability and reproducibility. The SUMS

fine leak was built to provide a fixed conductance of 1.2 x 10 .3 std cc/sec. The atmospheric

gases permeate between two parallel oxide or nitride thin films formed by controlled

passivation of the parent metal tubing. The tubing is forged into a flat plate at a point

midway between two miniature flanges. The conductance of the leak is determined by the

thickness of the submicron gap formed by the controlled degree of forging between the
interior walls of the tube.

3.5 SUMS Electronics

The UAMS was modified to operate in the SUMS mode by the addition of a

microprocessor computer control board, a power module, and a valve operation circuit. The

microprocessor board used an INTEL 8085 chip and discrete logic to provide the interfaces

between the shuttle data handling and command systems. The power module

accommodated the shuttle power bus to the SUMS requirements. A uv erasable PROM

stored the program which controlled the SUMS computer operations during the shuttle

mission. A pressurized container filled with SF6 gas housed the total instrument at

atmospheric pressure to prevent corona problems from the high voltage circuits as the

shuttle re-entered the earth's atmosphere passing through the corona pressure region. The

pressure case also provided thermal isolation from the expected heating of the nose area of

the shuttle. The SUMS packaging concept is shown by Figure 6. The instrument electronics

and inlet system are located in the Shuttle nose wheel well during flight as shown by

Figure 7.

3.6 Calibration Procedure

The SUMS instrument underwent a functional test and a static and dynamic

calibration run prior to being shipped from UTD to KSC for installation into the Space

Shuttle Columbia. A manually operated valve and special AN fittings were attached to the

SUMS inlet entrance tube so that after calibration and functional testing are completed, the

valve may be closed to maintain the SUMS vacuum integrity. The instrument, with exposed

12
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3.7

gasinlet entrancetube,wasattachedto a vacuumchamberpumpedby a sputter ion pump.
The vacuumchamberhasavariable orifice to the sputter ion pump. The orifice isadjusted
such that for the dynamic calibration the slope of the pumping speed can be set to
approximate the predicted shuttle entry profile. The vacuum chamber is equippedwith
suitablegaugesto permit monitoring of the gaspressurefrom about 100torr to 10"storr.
The principal gasesusedfor calibrationwere CO2,N2,and 02.

Two typesof calibration testswere performed on the completedSUMS hardware;
static pressureresponse,and dynamicpressureresponse.The static testswere performed
over an inlet pressurerangeof 10.5 to 1.6 torr for nitrogen and oxygen gas mixtures and for

a mixture of nitrogen, oxygen and carbon dioxide. These tests provided data for

determination of static sensitivity coefficients, external pressure at range valve closure,

external pressure at shutdown, and the ratio of pressure drops for the two leaks. Dynamic

calibration tests were run with typical flight inlet pressure profiles. The known time,

pressure and time, currents will be used to verify the SUMS analytic model of the instrument

response for flight data reduction.

Figure 8 shows a typical result from a static calibration test for a nitrogen/oxygen

mixture with the range value closed. These data from the flight instrument were obtained

to check the laboratory procedures, to provide data on the behavior of the automatic

electronic logic circuitry and total system, as well as to provide tests on the calibration data

reduction software system. Figure 3 presented earlier shows as a typical result from the

static calibration test for nitrogen/oxygen mixture with the range value open. The calibration

data and analysis is included in attachment Appendix B.

Inlet System Analysis

The SUMS system can be represented by an electrical analog consisting of a four-

node R-C network described on Figure 9. The following equivalences hold in the analogy:

voltage to pressure, current to volumetric flow rate, and resistance to the reciprocal of

molecular conductance. Resistances R1, Rz, and R, represent connecting tubing while R3B

represent the selectable leaks. Capacitors C1, Ca, and Ca represent volumes associated with

R1, R2, and R4. The network is terminated by R5 and C4 in (Rs) and the UAMS ion source

volume (C4). The applied forcing function, V(t), represents the surface pressure time history

expected at the orifice. A system of four nonhomogeneous linear differential equations was

formulated by applying Kirchoff's current law at each of the four nodes. The solution for

this system yields the voltages (pressures) as a function of time at the nodes. A computer

code was written for the solution and was programmed to provide the network output,

representing the UAMS ion source pressure, as a function of time. This procedure is

detailed in Appendix A.

16
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3.8 System Pressure Response

The SUMS dynamic system response to a rapidly increasing orifice pressure was a

major concern in the design phase. The static pressure drop across the inlet system tubing

is simple to predict and calibrate and is solely determined by the molecular conductances

of the system elements. The static drop is defined as Rs/I]Ri and is independent of the

system volume. The "dynamic" drop is more difficult to predict since it is affected by the

presence of finite volumes of the tubing and by the ratio of dP/dt to P at the orifice. A

suitable parameter for analysis of the dynamic pressure response is the ratio of actual drop

to the static drop that would exist at a constant pressure equal to the instantaneous dynamic

value. A design goal for SUMS was to hold this ratio as close to 1.0 as possible, in order

to minimize the introduction of error in flight data interpretation.

The predicted pressure drop history for the SUMS design is shown on Figure 10.

The minimum value of the fraction of static pressure drop (maximum drop) of 0.66 occurs

just after the dynamic range valve closes and coincides with the maximum dP/dt to P ratio.

3.9 Response to Changes in Gas Composition

A design goal for SUMS was to minimize time lag between the occurrence of changes

in gas composition at the orifice and the sensing of those changes at the UAMS ion source.

This time delay is determined by two processes; molecular diffusion and bulk transport.

Molecular diffusion rates decrease rapidly as pressure increases, such that the delay is

controlled almost solely by flow velocity through the system at pressures above 1 torr. This

led to a design approach which called for maximization of the gas flow velocity. Flow

velocity is affected by tubing diameters and by the presence of volume just ahead of the

leaks. Obviously, too, the tubing lengths affect the delay. The inlet system design took these

factors into account to the extent possible. Composition response lag times are predicted

as shown on Figure 11. The delay is predicted to be as much as 40 seconds for a short

period of time falling back to about 16 seconds until instrument cutoff. The beginning of

this region of relatively long composition response times corresponds to an altitude of about
80 km.

4.0 Problems and Solutions

During the course of the SUMS activities several failures and design changes have

been processed. The failures included valve operation, high voltage components, and

microprocessor chips. The design changes included modifying the housing of both the inlet

box and the instrument case, adding filters and changing the inlet configuration, and change

out of the pressure sensor to meet the range of measurement required. The configuration

change included adapting to the carbon-carbon chin panel re-design.
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4.1 Valve Problems

The SUMS atmospheric sample control valves, a miniature magnetic latching type,

proved troublesome to the SUMS performance throughout the program.

Initially the required leak rate of 1 X 10 -1° torr cc/sec air proved to be difficult to

achieve. Only one vendor was willing to accept this requirement. In order to meet the leak

rate a soft seat configuration of valve was chosen. The soft seat proved to be prone to

"sticking" if left in the closed position too long. A special technique of sending multiple

operate pulses under microprocessor control improved the reliability of operation of the

valve. A further hindrance to predicting valve operation came about due to the uncertainty

of the shuttle launch schedule. The valves could not be properly cycled after installation into

the shuttle.

At other times it appeared that the vulcanized viton seats may have secreted or
sublimated a material which collected or condensed on the valve body causing sticking in

the open condition. Although it is very possible that unknown contaminants entered the

valve by way of the ports either from the instrument or from the calibration systems.

A technique for monitoring and storing the current waveform of the valve operate

pulse in a digital form enabled the test operator to recognize a tendency to "stick". This

technique was incorporated into the test and checkout procedures used during the KSC

SUMS installation activity.

4.2 Crushed Ion Source

While conducting the static and dynamic calibration a marked decrease in the

sensitivity of the ion source with time was detected. The usual cause of loss of sensitivity for

an ion source is contamination of the surfaces allowing the build up of charge to defocus the

ion beam. While attempting to disassemble the source for cleaning it was found that the

sapphire spacers were crushed causing the elements to be misaligned. A weld ring inside
the source cover interfered with the source when installed. SN 7 UAMS was used to replace

the crushed SN 6 UAMS. The SN7 UAMS was used for all SUMS flights. Repairs were

made to the SN 6 UAMS source, but the sensitivity remained degraded. Apparently some

problem of alignment remains to be corrected.

4.3 High Voltage Breakdown

During a functional test a malfunction was indicated by abnormally high instrument

current. The problem was isolated to the emission control circuit. A transformer was found

to be faulty. A spare unit from the SUMS spare parts kit was used to replace the faulty
unit.
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4.4 Sputter Ion Pump Linearity

It was found during calibration that the pumping speed of the ion pump was

nonlinear. Further testing showed that the pump became linear if the high voltage was

reduced from 3000 Vdc to 1800 Vdc. the power supply was modified to incorporate the

lower voltage.

5.0 Flight Operations

The SUMS experiment was flown onboard the Shuttle Orbiter-102 vehicle. The

measurements from the SUMS was be initiated by Orbiter command approximately 1 hour

prior to the de-orbit maneuver. During reentry, mass density measurements were taken for

approximately 35 minutes with the data recorded on a separate OEX tape recorder located

remotely from the instrument system.

There are several instrument control functions to be performed throughout the flight

profile of the Orbiter. These are done autonomously by the SUMS logic circuitry within the

control system. Prior to launch, a prelaunch checkout was performed. During this time, all

valves remain closed with power being supplied to the ion pump. The instrument is cycled

on to gather system performance and condition data. This instrument cycling occurs prior

to the vehicle prelaunch operation. During the high vibration launch environment, all power

to the SUMS system is off. Approximately 1 to 2 hours after orbit insertion, the inlet valve

was commanded open to allow the trapped volume of gas behind the leaks to escape. At

this time, the ion pump power is also applied. About 1 to 2 hours prior to de-orbit burn,

the instrument was turned on to gather data on background levels as well as to allow time

for the system to warm up to operating temperature (warmup duration is about an hour).

During reentry, at about 5 x 10 .3 torr orifice pressure, the range valve in series with Leak #1

was closed, effectively switching the dynamic range of the instrument by forcing the gas

sample to flow through Leak #2 only. At 1.6 torr surface pressure (about 86 kin), all valves

are automatically closed, effectively stopping the external gas flow into the system. Beyond

this time, the instrument and ion pump remain powered on in order to gather data on the

pump-down of the system. During the terminal landing phase, the instrument was turned

off coincident with other OEX instrument systems. The ion pump remains powered for the

remainder of time in the entry profile and during ground operations so that vacuum

conditions within the UAMS can be maintained during periods of high external pressure for

reflight and instrument safety.

Data Analysis

Response to Changes in Gas Composition

A design goal for SUMS was to minimize time lag between the occurrence of changes
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in gascompositionat the orifice and the sensingof thosechangesat the UAMS ion source.
this time delay is determined by two processes;molecular diffusion and bulk transport.
Molecular diffusion rates decreaserapidly as pressure increases,such that the delay is
controlled almost solelyby flow velocitythrough the systemat pressuresabove 1torr. This
led to a designapproach which called for maximization of the gas flow velocity. Flow
velocity is affectedby tubing diametersand by the presenceof volume just ahead of the
leaks. Obviously,too, the tubing lengthsaffect the delay. The inlet systemdesigntook these
factorsinto accountto the extentpossiblewithin constraintsdiscussedearlier. Composition
responselag times are predicted asshownon Figure 11. The delay is predicted to be as
much as 40 secondsfor a short period of time falling back to about 16 secondsuntil
instrument cutoff.

Flight Data Reduction

Quick-look Analysis

The block diagram of the SUMS flight data reduction process is shown on Figure 12.

digital data from the SUMS instrument was be recorded in flight on the onboard OEX

recorder. The flight tapes were taken to the National Aeronautics and Space Administration

(NASA) Johnson Space Center (JSC) for processing and generation of experiment user

tapes.

Raw data for SUMS only was stripped at the NASA Langley Research Center and

will be input to quick-look processing programs which give information on the operation of

the instrument and science data display for preliminary analysis. Two examples of the types

of data display are shown on Figures 13 and 14 as actually processed by the software from

the SUMS STS 35 Flight Data. Figure 13 is a spectral plot obtained during the flight and

shows the measured ion currents for each of the mass numbers. Several significant peaks

which were caused by residual gases in the instrument are clearly evident. The large mass

28 peak is mostly molecular nitrogen since the 14 peak is consistent with the expected 14:28

ratio for nitrogen. Molecular oxygen shows at mass 32, argon at mass 40, and carbon

dioxide at mass 44. A small amount of water vapor is evident at mass 18 and the results of

fractionization of molecular nitrogen and oxygen show at masses 14 and 16. Figure 14 shows

the mass 28 peak time history during part of the flight. This peak varies because it is driven

by the external pressure. The internal instrument pressure reached a maximum at to + 985

seconds, at which time the range valve closed as indicated by the sharp drop in ion current.

Analysis of the quick-look data provided information to determine the background

and filtering necessary to separate the peak contributions from background gases. The

resultant filtered science data file was then used in a succession of programs which correct

for the pressure drop across the inlet system and for the PdPsuaa= ratio in the flowfield

about the Orbiter. Time and altitude histories of the orifice parameters (partial and total

pressures) and the freestream parameters (partial/total pressures, partial/total densities were
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obtained. Figure 15showsthe predictedaltitude history for the SUMS orifice pressurethe
STS-35SUMS flight.

6.2.2 Final Analysis

The final step in the data reduction occurs when the SUMS freestream data, reduced

acceleration data from HiRAP, and reduced wall temperature from the Development Flight

Instrumentation (DFI) are brought together to calculate the force coefficients and the

viscous interaction parameter. This work is in process.

Several separate development analyses go into constructing the data base which is

used in the final data reduction and analysis of the flight data. These include: (1) the

contaminant analysis which consists of laboratory simulations of flight conditions for spectral

analysis of outgassing properties of the materials which may affect the gas sample, (2) the

calibration analyses which produce the calibration factors, and (3) the flowfield development

which uses a Monte-Carlo technique to describe the rarefied flow properties about the

Orbiter so that freestream properties can be obtained, a procedure which is analogous to

using hypersonic continuum theoretical pressure coefficients from a flowfield computer code

in order to interpret freestream conditions from pressure transducers.
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